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Abstract – In terms of electromagnetic and thermal parameters, the utilization of asynchronous induction machines
applied in railway traction drives is much higher than those used in industrial drives. Therefore, the multi-physics
optimization with respect to electromagnetic and thermal behaviour is nowadays one of the most important design
task with such machines. The paper discusses a novel optimization approach considering the Pareto optimal
design to improve both electromagnetic characteristics and thermal behaviour using a sequential coupling of
electromagnetic, thermal as well as fluid dynamics analyses.

Index Terms – Pareto optimization, Multi-physics optimization, Induction machine, Finite element analysis.

I. Introduction

BESIDES of the very high electromagnetic and ther-
mal utilization of induction machines applied in rail-

way traction drives, there is very limited space for all
components of the entire drive system, too. In partic-
ular with high speed trains, the increased power density
asks for improved cooling methods and advanced machine
designs respecting additional limitations e.g. on noise.

By using a typical length scale of an induction ma-
chine λ such as air-gap diameter or stacking length [1],
the power losses PCu depend on the square of the current
density J within the windings while the iron losses PFe
in the iron parts depend on the square of the magnetic
flux density B as well as the frequency f of the rotating
field scaled by 1 ≤ β ≤ 2 as

PCu ∼ J2 λ3 , PFe ∼ B2 fβ λ3 . (1)

On the other hand, the temperature rise ∆T due to these
losses can be assumed as

∆T ∼ P

λ2 . (2)

Consequently, constant or increased electromagnetic uti-
lization leads to an uprising cooling problem with electri-
cal machines having a very high torque and power density.

The proposed optimization algorithm utilizes a sequen-
tial coupling of electromagnetic, thermal and fluid dy-
namics analyses by using numerical and analytical meth-
ods [2]–[6]. The most important optimization lies on ge-
ometry and arrangement of the cooling ducts with respect
to thermodynamics and electromagnetics.

II. Optimization Algorithm

The objectives of the optimization are a minimized
magnetizing current, a minimized rotor temperature as
well as a minimized stator temperature. Fig. 1 shows the

Fig. 1. Permissible areas of the cooling ducts with stator and rotor

permissible areas of the cooling ducts with stator and ro-
tor. However, there are some constraints which have to
be considered such as in particular a minimum distance
between the cooling ducts and a minimum width of the
cooling ducts in order to have a realizable pressure drop
with an appropriate heat transfer.

Fig. 2 depicts the effects of an increased cross section
due to either increased number and/or geometric size of
the cooling ducts on the magnetizing current of the induc-
tion machine. Since both objectives counteract against
each other, there will be no global optimum of the ma-
chine [7], [8]. However, a Pareto optimum can be defined
by weigthing magnetization current and temperature rise
to obtain an optimal design.

Fig. 3 depicts the sequential optimization loop. Elec-
tromagnetic and thermal analyses are carried out by fi-
nite element analyses which use fully parametric meshing,
solving and postprocessing. With the intent of a fast opti-
mization, the fluid analyses within the optimization loop
utilize an analytical model to incorporate the heat trans-
fer with forced convection in the parallel cooling ducts.
Thereby, the heat transfer coefficient α depends on Nus-
selt, Reynolds and Prandtl numbers,

α = α(Nu) , Nu = Nu(Re,Pr) . (3)



Fig. 2. Increase of magnetizing current due to the cooling ducts Fig. 3. Optimization loop

Since the same overall pressure loss of all parallel cool-
ing ducts must be fulfilled, the in general different veloc-
ity with each cooling duct caused by the arrangement is
determined iteratively until the pressure condition is ful-
filled. Afterwards, the final design will be analyzed by
detailed numerical fluid dynamics analyses.

The full paper will discuss more details about the algo-
rithm, particularly sensitivity tasks with respect to geo-
metric parameters as well as feedback with already built
machines in terms of their cooling parameters.

III. Design Improvement

Fig. 4 shows a comparison of the temperature distribu-
tion between the initial design and the optimized design.
The most important differences are a decreased volume
flow although with an increased number of cooling ducts,
decreased maximum and average temperatures within the
active parts yielding in particular reduced power losses
and a decreased magnetizing current, too.

IV. Conclusion

A novel approach for the coupled electromagnetic-
thermal optimization of air-cooled induction machines
utilized in high power traction drives is presented. The
optimization algorithm deals with numerical as well as in
particular in the fluid dynamics section analytical meth-
ods. However, the optimized design will be analyzed by
means of detailed numerical fluid dynamics analyses af-
terwards.

Since an increasing number or cross section of the cool-
ing ducts enforces a higher magnetizing current and thus
increased iron losses, the optimal design is a Pareto opti-
mum with respect to given limits on in particular power
factor, temperature rise and heat transfer parameters.

Typical results and design improvements due to the
optimization include a reduced air flow, consequently re-
duced fan power and noise, reduced winding tempera-
tures, thus decreased power losses and an increased life
time of the machines, as well as a reduced magnetizing
current yielding enhanced field weakening capabilities, an
increased power factor and finally a better efficiency.

Fig. 4. Comparison between initial and optimized design
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